NASA Rethinks X Planes

Dean Sigler Electric Aircraft Components, Electric Aircraft Materials, Electric Powerplants, Hybrid Aircraft, Sustainable Aviation 0 Comments

In your editor’s childhood and youth, X Planes were all premised on speed, Chuck Yeager breaking the sound barrier in 1947 in the Bell X-1 when your editor was five years old (do the math).  Movies that filled screens in those days featured test pilots as steely-jawed, fearless protagonists beating back the awesome forces in the sky.  Frequent news stories and breathlessly narrated newsreels, and later television news captured the imagination with items about going higher, faster, and farther. NASA is bringing back the X-plane, but emphasizing quiet, efficient, clean and practical goals.  NASA’s own description of the programs shows a turn toward green aviation in our future.  “Goals include showcasing how airliners can burn half the fuel and generate …

SULSA Guides the Royal Navy

Dean Sigler Electric Aircraft Components, Electric Aircraft Materials, Electric Powerplants, Sustainable Aviation 0 Comments

We reported on the reputedly first 3D-printed airplane, a laser-sintered plastic craft with a structure we compared to that of the WWII Wellington bomber, almost five years ago.  Since then, the aircraft has been dubbed SULSA (Southampton University Laser Sintered Airplane) and taken its place with the Royal Navy. Jim Scanlan, lead academic on the project and professor of design within engineering and the environment at the University, explains, “Not all of our aircraft are 3D printed and the biggest one is around 60 per cent 3D printed.  At the moment we make this lovely sophisticated lightweight structure and then spend a week making all the wiring and soldering. It’s labor-intensive and error prone. Our vision is that we print …

Quart in a Pint Pot

Dean Sigler Batteries, Electric Aircraft Components, Electric Aircraft Materials, Electric Powerplants, Sustainable Aviation 1 Comment

Lilium is still in its incubator stage, but drawing a lot of interest for its radical two-seat, high-speed aerial vehicle. EIT Climate-KIC, one of the funding organizations helping underwrite this startup, includes some startling claims in Lilium’s description. “Lilium is designing the world’s fastest and highest-range electric aircraft that is commercially available. “The two-seated light aircraft consumes half the energy of today’s most efficient electric cars and is so quiet that it can’t be heard flying in 1 km (@3,300 feet) altitude. It is propelled by electric impeller engines and features an extensive safety concept comprising a 3-fold redundant fly-by-wire control system, 12 redundant batteries and engines as well as a parachute rescue system for the whole aircraft.” The ESA Business …

Superoxides May Be New Super Materials for Batteries

Dean Sigler Batteries, Electric Aircraft Components, Electric Aircraft Materials, Sustainable Aviation 0 Comments

A significantly large and geographically diverse group of researchers has invested a large amount of time and intellectual capital investigating superoxides, an innovative way to keep lithium-air batteries refreshed and ready for more. Groups at Argonne National Laboratory, the University of Illinois at Chicago, Hanyang University in Seoul, South Korea; the University of Utah and the University of Kentucky all contributed to the ongoing project. While still serving as U. S. Secretary of Energy, Steven Chu called on academia and industry to develop a battery five times as powerful as then available lithium cells, at one-fifth the cost of then current batteries. We may not have arrived at that ambitious goal yet, but Argonne and UIC see a possible breakthrough …

Deformable Flexible and Conductive – A Great Solid Electrolyte

Dean Sigler Batteries, Electric Aircraft Materials, Electric Powerplants, Sustainable Aviation 0 Comments

Reporting on a new material that doesn’t seem real, a joint research team from Ulsan National Institute of Science and Technology (UNIST) and Seoul National University in Korea says it has developed a “highly-conductive, highly deformable, and dry-air-stable glass electrolyte for solid-state lithium-ion batteries.  If those characteristics seem mutually exclusive, the electrical performance helps dispel skepticism. Assisted by colleagues at Lawrence Berkeley National Lab and Brookhaven National Lab, the researchers prepared the electrolyte using a “homogenous methanol solution,” and wetting exposed surfaces of the electrode active materials with the solidified electrolyte. Eureka Alert! quotes Professor Yoon Seok Jung  (UNIST, School of Energy and Chemical Engineering) , “The research team also developed a material for the solid electrolyte by adding the iodized lithium …

Pollutants into Clean Energy: Batteries into Solar Cells

Dean Sigler Batteries, Electric Aircraft Materials, Solar Power, Sustainable Aviation 0 Comments

Editor’s Note: We will tackle some larger contexts for the blog, including not only the aeronautical uses of clean energy but the social, environmental and even economic implications of sustainable aviation.  This item appeals because it demonstrates the possibility of transforming materials otherwise hard to live with into products that enhance life and even give some hope for budget solar cells.  Angela Belcher has made battteries from viruses and works with biological solutions to energy production.  In this instance, she and her colleagues have shown a path to a sunnier future for all.  Her work combining quantum physics and biology in the example below highlights the potential in a true paradigm shift. Another, less exotic but no less exciting instance shows …

A Snowstorm in Singapore

Dean Sigler Electric Aircraft Materials, Electric Powerplants, Sustainable Aviation 1 Comment

Having worked on a three-week project in Singapore 10 years ago, your editor became accustomed to the daily temperatures approaching 100 degrees Fahrenheit, and evenings at a temperate 80 degrees (which some locals described as a “cold snap”).  It makes one wonder where the name “Snowstorm” came from when students at the National University of Singapore worked two semesters to bring their mult-rotor recreational flying vehicle to fruition.  An eight-person student team working as “FrogWorks” started with a 1/6th-scale model, then scaled that up to something that could carry and be controlled by a single pilot. FrogWorks is a collaborative effort between NUS Faculty of Engineering’s Design-Centric Program (DCP) and the University Scholars Program (USP).  According to NUS, “FrogWorks engages …

Researchers Strike Battery Fools Gold on Two Continents

Dean Sigler Batteries, Electric Aircraft Materials, Sustainable Aviation 0 Comments

Better, Cheaper, Faster.  That was the mantra when your editor worked in the semiconductor manufacturing world.  Designs, processes and materials were all recalibrated constantly to enable the march toward those three goals.  And to some extent, constant repetition helped us achieve the ideal of Moore’s Law, the dictum that computer chips would double the number of transistors they contained every two years.  Transistor density in computer chips determines the level of performance they can achieve, and this doubling has yet to reach its end. Unfortunately, batteries haven’t doubled in performance every two years, but seem to follow an annual five-to-eight-percent increase in energy density.  This would mean, at best, that energy densities would double every nine years.  The Tesla Forum notes …

Cambridge’s “Ultimate” Battery? Wait 10 Years and See

Dean Sigler Batteries, Electric Aircraft Materials, Electric Powerplants 0 Comments

Cambridge University researchers claim to have successfully demonstrated how several of the problems impeding the practical development of the so-called “ultimate” battery, in this case a lithium-oxygen unit, could be overcome.  They make some pretty impressive claims, saying they’ve developed a working laboratory demonstrator with “very high” energy density – comparable to that of gasoline and with greater than 90-percent efficiency, and the ability to be recharged more than 2,000 times, or 5-1/2 years with a complete cycle and recharge every day. A lithium-oxygen or lithium-air battery of this type would allow an uninterrupted drive between London and Edinburgh on a single charge, about 415 miles, over 100 miles greater than the top mileages promised by Tesla and GM at …

Biggest, Fastest 3D Printed Airplane So Far

Dean Sigler Diesel Powerplants, Electric Aircraft Components, Electric Aircraft Materials 1 Comment

Unveiled at the Dubai Air Show this week, the collaborative effort between Stratasys and Aurora Flight Sciences is the largest and fastest 3D-printed aircraft so far.  With a 9-foot wingspan and weighing 30 pounds, the unmanned aerial vehicle is also the first jet aircraft to be made through additive manufacturing. 80 percent by weight was made through the advanced process, the rest consisting of the engine, electronics and tires.  Because the airplane was designed in a collaborative computer aided design process, the parts could be printed in Stratasys’ facilities even though they were designed primarily in Aurora’s Virginia headquarters. Besides saving weight, the process saves time, the complete aircraft going from initial idea to first flight in under nine months. …