Superoxides May Be New Super Materials for Batteries

Dean Sigler Batteries, Electric Aircraft Components, Electric Aircraft Materials, Sustainable Aviation 0 Comments

A significantly large and geographically diverse group of researchers has invested a large amount of time and intellectual capital investigating superoxides, an innovative way to keep lithium-air batteries refreshed and ready for more. Groups at Argonne National Laboratory, the University of Illinois at Chicago, Hanyang University in Seoul, South Korea; the University of Utah and the University of Kentucky all contributed to the ongoing project. While still serving as U. S. Secretary of Energy, Steven Chu called on academia and industry to develop a battery five times as powerful as then available lithium cells, at one-fifth the cost of then current batteries. We may not have arrived at that ambitious goal yet, but Argonne and UIC see a possible breakthrough …

Cambridge’s “Ultimate” Battery? Wait 10 Years and See

Dean Sigler Batteries, Electric Aircraft Materials, Electric Powerplants 0 Comments

Cambridge University researchers claim to have successfully demonstrated how several of the problems impeding the practical development of the so-called “ultimate” battery, in this case a lithium-oxygen unit, could be overcome.  They make some pretty impressive claims, saying they’ve developed a working laboratory demonstrator with “very high” energy density – comparable to that of gasoline and with greater than 90-percent efficiency, and the ability to be recharged more than 2,000 times, or 5-1/2 years with a complete cycle and recharge every day. A lithium-oxygen or lithium-air battery of this type would allow an uninterrupted drive between London and Edinburgh on a single charge, about 415 miles, over 100 miles greater than the top mileages promised by Tesla and GM at …

Ohio State’s Solar-Air Potassium Battery

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Ohio State University researchers have come up with a two-in-one solar cell/battery combination that promises great efficiency and low costs.  What’s not to like? Unfortunately for readers of the blog, it’s initially only a stationary system that will make energy storage a viable circumstance for large power plants, but it seems that the technology could be adapted to lighter, portable applications, such as electric vehicles. Ohio State is keeping somewhat mum about the patent-pending device, which they are developing as a commercial entity under the auspices of their spin-off, Kair (K for potassium, plus air and pronounced “care”).  We’ve heard a great deal about upcoming lithium-air batteries, but potassium-air is unique.  Even more unique, this battery stores energy from its …