The 2019 Personal Aircraft Design Academy (PADA) Trophy

Dean Sigler Hybrid Aircraft, SAS, Solar Power, Sustainable Aviation Leave a Comment

Honoring John Langford If one stays with a line of work long enough, one will accomplish mighty things.  That’s certainly true for John Langford, Chief Executive Officer for Aurora Flight Sciences.  His decades-long career, start his decades-long career, starting at Massachusetts Institute of Technology and culminating his company partnering with Boeing, has explored almost every aeronautical discipline.  For this perseverance, he was awarded the 2019 Personal Aircraft Design Academy (PADA) Trophy. Aurora Flight Sciences’ Chief Technology Officer, Tom Clancy, was on hand at the 2019 Sustainable Aviation Symposium at UC Berkeley to accept the award for Langford.  Clancy has worked with Langford since their MIT days, building and flying several human-powered aircraft, including the 1974 Daedalus.  That aircraft flew the …

Charging Carbon Dioxide Batteries and Clearing the Air

Dean Sigler Announcements, Batteries, Electric Aircraft Materials, Sustainable Aviation Leave a Comment

We would love to find ways to reduce carbon dioxide as a threat to our climate with an ever-decreasing timeline for accomplishing that task.  University of Illinois at Chicago and Massachusetts Institute of Technology (MIT) have made inroads into creating a carbon dioxide battery that uses CO2 as an energy storage component. Amin Salehi-Khojin, associate professor of mechanical and industrial engineering at UIC’s College of Engineering, explains, “Lithium-carbon dioxide batteries have been attractive for a long time, but in practice, we have been unable to get one that is truly efficient until now.” A 7X Battery The incentive to use CO2 comes from lithium-carbon dioxide batteries having a specific energy density more than seven times greater than conventional lithium-ion cells.  …

MIT’s Ionic Flyer – Solid State All the Way

Dean Sigler Announcements, Electric Aircraft Components, Electric Aircraft Materials, Electric Powerplants, Sustainable Aviation 2 Comments

This week, a kerfuffle tsunami has swept through the aeronautical press, with the announcement by Steven Barret of the Massachusetts Institute of Technology (MIT) that he has flown an ion-powered airplane that “doesn’t depend on fossil fuels or batteries.”*  (A minor point – the airplane does have a battery that gets its output voltage ramped up by a custom power supply.) Five years ago, your editor reported on ionic thrusters, several of which were being tested by Barrett, associate professor of aeronautics and astronautics. These little devices have great promise for moving vehicles in space, where the vacuum presents no aerodynamic drag to overcome. Even a small nudge from a thruster in space will cause a vehicle to accelerate. They …

Aurora’s Odysseus – Large Enough for Its Mythic Name

Dean Sigler Electric Aircraft Materials, Electric Powerplants, Solar Power, Sustainable Aviation Leave a Comment

Named for a mythical hero like its evolutionary predecessors, Aurora Flight Science’s Odysseus is a huge, but ephemeral thing. A wingspan larger than the largest 747’s and a weight no greater than a Smart Car’s (around 1,500 pounds) means this airplane will be slow and frail.  A carbon fiber tube structure covered by lightweight Tedlar™ resembles the construction of Solar Impulse, but without the bulk of carrying a pilot. Since its antecedent was the world record holding distance champion in human-powered aircraft, the manner of flight is no surprise.  Its intended altitude is.  Odysseus takes it to the stratosphere. It’s the latest revelation in a thirty-year exploration of low-powered, extreme-endurance aircraft.  Before he founded Aurora, John Langford led a group of …

Your Battery is on Fire – and That’s a Good Thing

Dean Sigler Batteries, Electric Powerplants, Sustainable Aviation Leave a Comment

Mary Grady’s report at AvWeb alerted your editor to this exciting development. Imagine a battery capable of seven times the energy output of any lithium battery now in existence, made of non-toxic, easily recycled materials.  One aspect of this new energy source might give you pause, however.  You have to set fire to the battery to extract all that energy. With recalls of so-called “hoverboards” and still warm memories of Tesla and 787 Dreamliner battery fires, folks might be excused for wanting to avoid anything that combines fires with batteries.  The new approach, from MIT researchers, uses carbon nanotubes as its base, and these don’t self-ignite like their lithium cousins. Michael Strano, the Carbon P. Dubbs* Professor in Chemical Engineering …

Pollutants into Clean Energy: Batteries into Solar Cells

Dean Sigler Batteries, Electric Aircraft Materials, Solar Power, Sustainable Aviation Leave a Comment

Editor’s Note: We will tackle some larger contexts for the blog, including not only the aeronautical uses of clean energy but the social, environmental and even economic implications of sustainable aviation.  This item appeals because it demonstrates the possibility of transforming materials otherwise hard to live with into products that enhance life and even give some hope for budget solar cells.  Angela Belcher has made battteries from viruses and works with biological solutions to energy production.  In this instance, she and her colleagues have shown a path to a sunnier future for all.  Her work combining quantum physics and biology in the example below highlights the potential in a true paradigm shift. Another, less exotic but no less exciting instance shows …