On a Clear Day, I Can See My iPad

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Dr. Brien Seeley, President of the CAFE Foundation, shared the news of an exciting breakthrough that could make the see-through parts of an airplane’s solar collectors.  Most solar collectors have a black or near-black look because they are absorbing light in the visible spectrum.  Pulling energy from infrared or ultraviolet spectra invisible to the human eye allows Ubiquitous Energy’s Clearview Power translucent film of to be laid over iPad and Kindle screens and keep them charged constantly. Consider the possibilities of such films covering the Plexiglas or carbonate canopies on aircraft.  Even those portions could then be energy collectors.  On craft such as electric sustainer motor powered sailplanes, the glazed area comprises a large part of the total fuselage surface …

New “Leaf” Turns Over More Energy

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Scientists have been working on imitating nature’s ability to photosynthesize the sun’s energy, much as plants turn that energy into food for their health and growth.  Daniel Nocera, for instance, created an artificial leaf that split water into oxygen and hydrogen that could fire up a small fuel cell and run an electric light.  According to a Science Pub lecture your editor recently attended, an eight-ounce glass of water can power a 60-Watt bulb for 20 hours.  Nocera, in a Pop! Tech talk, claims an Olympic-size swimming pool could supply all the world’s energy needs. Nocera now works at Harvard, but researchers at Massachusetts Institute of Technology (MIT), his former home, are taking his work further, detailing all the limitations …

Cambridge, MIT Chasing Room-Temperature Hydrogen

Dean Sigler Electric Powerplants, Sustainable Aviation 1 Comment

News from Cambridge University shows some promise for inexpensive production of hydrogen, an elusive process considering the lightest element in creation is also the most common, said to make up 90 percent of the visible universe.  On earth, it readily combines with oxygen to form water, a handy thing to have around for the benefit of our species. Getting hydrogen out of the water so that we can burn it in our cars and airplanes is a frustrating process, though, often requiring more energy for the extraction than can be obtained from its combustion. According the National Renewable Energy Laboratory, “To make [hydrogen] usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source …

A Layer of Graphene, A Layer of Nanowires…

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Combine nano-anything with graphene, and that seems to describe most of what’s driving physics and chemistry laboratories at our major universities.  The blog reported last week on Princeton researchers who’ve created a thin, flexible solar cell that absorbs 96-percent of received light and draws energy from off-axis and varied wavelengths of light. MIT researchers, too, have created a thin, flexible solar cell, but one based on layers of flexible graphene sheets, each coated with a layer of nanowires.  Besides flexibility, these sheets offer transparency, enabling their use on windows as well as other surfaces. David Chandler, reporting for MIT states that the new cells may prove to be far less expensive than today’s silicon equivalents, which require high-purity silicon that undergoes crystallization …

There’s Light at the End of the Funnel

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Solar cells are relatively inefficient at gathering the total range of sunlight’s spectrum that falls on them every day.  Trying to find a way to capture more than a single wavelength or narrow band of the solar light, scientists at Massachusetts Institute of Technology (MIT) and at Peking University in China propose putting a strain on solar cells, creating a spatially varying bandgap that would react to more of the colors in light and thus give off more electricity.  Changing the bandgap in a solar collector’s material enables excitation of electrons from not just visible light, but from energy sources such as infrared radiation. This has the potential to increase the cell’s energy output enormously since most of the sun’s …

Spinach, Photosynthesis, and Solar Energy

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Spinach is the Rodney Dangerfield of the vegetable kingdom, and despite the best efforts of nutritionists, Popeye, and school lunch ladies to boost its respect levels, goes unwanted by many. But not by the team at Vanderbilt University who have combined it with silicon in a “biohybrid” solar cell. According to Vanderbilt’s David Cliffel, associate professor of chemistry, “This combination produces current levels almost 1,000 times higher than we were able to achieve by depositing the protein on various types of metals. It also produces a modest increase in voltage.” Cliffel collaborated on the project with Kane Jennings, professor of chemical and biomolecular engineering. “If we can continue on our current trajectory of increasing voltage and current levels, we could …

Fixed Wings Find Their Way

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Dynamic presentations by Sebastian Thrun and Nicholas Roy have alerted and informed CAFE Foundation’s Electric Aircraft Symposia attendees of highly sophisticated efforts to allow autonomous full-size automobiles and miniature helicopters to navigate through or over unfamiliar terrain. Using clues from lasers, infrared sensors, inertial guidance systems and sometimes GPS coordinates, the vehicles use control algorithms to guide themselves around obstacle-strewn courses. As noted in Science Daily and the The Massachusetts Institute of Technology’s press office this week, “Dozens of research teams have competed in a series of autonomous-helicopter challenges posed by the Association for Unmanned Vehicle Systems International (AUVSI); progress has been so rapid that the last two challenges have involved indoor navigation without the use of GPS.” Mini-copters have …

The Artificial Leaf

Dean Sigler Electric Powerplants 0 Comments

Daniel Nocera, Henry Dreyfus Professor of Energy and professor of chemistry at Massachusetts Institute of Technology (MIT), has caused a stir in the scientific community and attracted press attention including a recent feature article in the May 14 New Yorker. MIT’s own press release makes it sound all too simple and immediately appealing. “The artificial leaf — a silicon solar cell with different catalytic materials bonded onto its two sides — needs no external wires or control circuits to operate. Simply placed in a container of water and exposed to sunlight, it quickly begins to generate streams of bubbles: oxygen bubbles from one side and hydrogen bubbles from the other. If placed in a container that has a barrier to …

MIT Solar Findings Mirror Those of 13 Year Old’s Tree Research

Dean Sigler Electric Powerplants, Sustainable Aviation 1 Comment

A recent report from MIT, replete with computer algorithms and graduate level insights, made your editor dip back into a story about a young naturalist who saw a model in nature that could lead to more efficient solar arrays.  Both produced works of genius and give us hope for some real breakthroughs in solar power deployment. The Massachusetts Institute of Technology announced that, “Innovative 3-D designs from an MIT team can more than double the solar power generated from a given area,” and suggested that models of their new approach, “show power output ranging from double to more than 20 times that of fixed flat panels with the same base area.” Jeffrey Grossman, the Carl Richard Soderberg Career Development Associate …

Better Batteries: Wrap It in Seaweed

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

MIT’s Technology Review reported last September that researchers at the Georgia Institute of Technology and Clemson University had formulated a way to keep silicon anodes in lithium batteries from cracking under the strain of expending and contracting while they charge and discharge. They added a “binding agent and food additive derived from algae” that is in turn derived from seaweed. This enables the anode to charge and discharge at an eight times greater rate than an equivalent carbon anode without breaking down, a common problem for “raw” silicon. Environmentally friendly, the manufacturing processes for this type of anode are claimed to be clean and inexpensive. According to the Technology Review, “Lithium-ion batteries store energy by accumulating ions at the anode; …