Charging Carbon Dioxide Batteries and Clearing the Air

Dean Sigler Announcements, Batteries, Electric Aircraft Materials, Sustainable Aviation Leave a Comment

We would love to find ways to reduce carbon dioxide as a threat to our climate with an ever-decreasing timeline for accomplishing that task.  University of Illinois at Chicago and Massachusetts Institute of Technology (MIT) have made inroads into creating a carbon dioxide battery that uses CO2 as an energy storage component. Amin Salehi-Khojin, associate professor of mechanical and industrial engineering at UIC’s College of Engineering, explains, “Lithium-carbon dioxide batteries have been attractive for a long time, but in practice, we have been unable to get one that is truly efficient until now.” A 7X Battery The incentive to use CO2 comes from lithium-carbon dioxide batteries having a specific energy density more than seven times greater than conventional lithium-ion cells.  Unfortunately, until now, Li-CO2 batteries haven’t been rechargeable – at least for a reasonable number of cycles. Now, researchers at the University of Illinois at Chicago have demonstrated, “lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable …

Making Structural Batteries More Sinewy

Dean Sigler Batteries, Electric Aircraft Materials, Sustainable Aviation Leave a Comment

Multitudes of researchers have exercised their mental muscles trying to make man-made products mimic naturally-occurring structures.  According to University of Michigan researchers, the cartilage in your knees might provide the inspiration for a “structural battery” prototype that would be durable and easy to shape. This blog has long promoted the idea of structural batteries, energy storage systems that could double as strengthening elements in the aircraft shell.  Storing energy in car bumpers or airplane wings has some risk elements.  What will happen to a battery cracked by collisions on the ground or excessive loads in the air, for instance.  Nicking or puncturing existing batteries can cause flaming catastrophes. As U of M researchers note, “[Structural batteries] been a long-term goal for researchers and industry because they could reduce weight and extend range. But structural batteries have so far been heavy, short-lived or unsafe.  The school’s tests, described in ACS Nano, ended up with damage resistant, rechargeable zinc batteries with a …

One step to Liquid Hydrocarbon Fuels from Thin Air

Dean Sigler Biofuels, Solar Power, Sustainable Aviation Leave a Comment

University of Texas at Arlington chemists and engineers have converted carbon dioxide and water directly into useable liquid hydrocarbon fuels – in one step.  The “simple and inexpensive new sustainable fuels technology” used concentrated sunlight, high pressure and heat to remove CO2 from the air and even revert oxygen back into the system. Researchers demonstrated that a one-step conversion of carbon dioxide and water into liquid hydrocarbons and oxygen can be performed in a photothermochemical flow reactor operating at 180 to 200 degrees C and pressures up to six atmospheres. Brian Dennis, UTA professor of mechanical and aerospace engineering and co-principal investigator of the project, explains, “We are the first to use both light and heat to synthesize liquid hydrocarbons in a single stage reactor from carbon dioxide and water. Concentrated light drives the photochemical reaction, which generates high-energy intermediates and heat to drive thermochemical carbon-chain-forming reactions, thus producing hydrocarbons in a single-step process.” Frederick MacDonnell, UTA’s interim chair of chemistry and …

Researchers Strike Battery Fools Gold on Two Continents

Dean Sigler Batteries, Electric Aircraft Materials, Sustainable Aviation Leave a Comment

Better, Cheaper, Faster.  That was the mantra when your editor worked in the semiconductor manufacturing world.  Designs, processes and materials were all recalibrated constantly to enable the march toward those three goals.  And to some extent, constant repetition helped us achieve the ideal of Moore’s Law, the dictum that computer chips would double the number of transistors they contained every two years.  Transistor density in computer chips determines the level of performance they can achieve, and this doubling has yet to reach its end. Unfortunately, batteries haven’t doubled in performance every two years, but seem to follow an annual five-to-eight-percent increase in energy density.  This would mean, at best, that energy densities would double every nine years.  The Tesla Forum notes this progress would not be continuous, but introduced in steps. Without either party sharing much information on the energy densities of their experimental cells, researchers in America and Switzerland find the “super environmentally friendly” nature of fool’s gold in batteries …

Corn Stalks and Cobs Into Clean Hydrogen

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Hydrogen has several demerits in coming to the energy market.  A primary issue for H2 critics – that hydrogen requires more energy to produce than it gives back – may have been answered by Dr. Percival Zhang of Virginia Tech’s Department of Biological Systems Engineering, which is in both the College of Agriculture and Life Sciences and the College of Engineering.  We’ve covered his work before, usually in terms of turning corn into biofuels or in finding biological ways to produce hydrogen with low energy input. Part of his exploratory mandate comes from his ECHo cycle.  “I wish to suggest constructing the electricity-carbohydrate-hydrogen (ECHo) cycle… could meet four basic needs of humans: air, water, food and energy, while minimizing environmental footprints. In it, electricity is a universal high-quality energy carrier; hydrogen is a clear electricity carrier; and carbohydrate is a hydrogen carrier, an electricity storage compound and sources for food, feed and materials. By using this cycle, we could replace …

Beating Plants at Their Own Game

Dean Sigler Diesel Powerplants, Sustainable Aviation Leave a Comment

Going to medical school to learn how to use bacteria to make gasoline may seem like a complicated process, but the developers of a new way of extracting biofuels from sunlight say it’s not.  You may remember Dr. Daniel Nocera’s efforts a few years ago to create a bionic leaf, a simple way to extract oxygen and hydrogen from water when the leaf in water was exposed to sunlight.  Several other such “water splitters” have achieved newsworthiness in the last few years, but each has the impediment of not delivering hydrogen in a readily useable way. Usually, any H2 produced has to be compressed, stored in hydrides, or encapsulated in some way to make it a viable fuel.  There is not a national infrastructure to allow hydrogen to be distributed as readily as gasoline or Diesel.  Researchers working with Dr. Nocera “at Harvard University’s Faculty of Arts and Sciences, Harvard Medical School and the Wyss Institute for Biologically Inspired Engineering …

Copper Catalyst Makes Room Temperature Ethanol

Dean Sigler Diesel Powerplants, Sustainable Aviation Leave a Comment

We’ve written a great deal about ways of making so-called “bio-fuels,” those ethanol, methanol and even diesel substitutes that avoid the high toxicity and environmental harm of fossil fuels.  Often though, these substitutes require the diversion of foodstocks or the use of exotic catalysts and high energy inputs to trigger the appropriate mechanisms. Scientists as Stanford University may have found a way to use copper, though, to make ethanol without corn or other plants.  They’ve “created a copper-based catalyst that produces large quantities of ethanol from carbon monoxide gas at room temperature.” Matthew W. Kanan, Assistant Professor at Stanford, has been working toward this kind of biofuel production for many years.  His University profile contains the following: “The ability to convert H2O, CO2 and N2 into fuels using renewable energy inputs could in principle provide a viable alternative to the current dominance of fossil fuels. This prospect faces great technical challenges, the foremost of which is the lack of efficient …

Caging Hydrogen in Self-assembling Origami Structures

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Let’s say that you’re really good at folding pieces of paper into miniature birds such as cranes, or life-size elephants, something origami artist Sipho Mabona did recently, starting with a 50-foot by 50-foot piece of paper (he had help from up to 40 others).   The paper elephant, including a metal subframe to support it, weighs over 500 pounds. How about using origami to trap hydrogen in a novel approach to storing energy for fuel cells?  Only, instead of paper, you might use sheets of graphene cleverly folded into cages no more than a few nanometers across – the opposite of the elephant in the art gallery.  Researchers at the University of Maryland’s Department of Mechanical Engineering and Maryland NanoCenter, have done just that, but so far just as a simulation of the molecular dynamics involved.  They have demonstrated that such cages can be opened and closed “in response to an electrical charge using a technique they call hydrogenation-assisted graphene origami …

5X Batteries? How About 70,000X Solar Cells?

Dean Sigler Electric Powerplants, Sustainable Aviation 2 Comments

Matt Shipman of North Carolina State University News Services reports on a connector that could allow stacking solar cells without losing voltage.  This stacking could allow cells to operate at solar concentrations of “70,000 suns worth of energy without losing much voltage as ‘wasted energy’ or heat.”  This could have tremendous implications improving the overall efficiency of solar energy devices and reducing the cost of solar energy production. Stacked solar cells live up to their name, simply being several cells stacked on one another, with their layering leading to up to 45-percent efficiency in converting solar energy into electricity.  So far, the big drawback has been the junctions between cells, which tend to waste the energy from the connected cells as heat. Dr. Salah Bedair, a professor of electrical engineering at NC State and senior author of a paper describing the work says, “We have discovered that by inserting a very thin film of gallium arsenide into the connecting junction of …

Competition Heats Up in Lithium-Sulfur Batteries

Dean Sigler Electric Powerplants, Sustainable Aviation 3 Comments

Founded in October 2010, NOHMs Technologies has developed a battery based on lithium-sulfur chemistry.  In April 2013, the company was awarded a $500,000 Phase II SBIR Award from the National Science Foundation (NSF) to scale a novel low-cost manufacturing process for long-life sulfur cathode composite materials.   NOHMs (Nano Organic Hybrid Materials) will locate to and use facilities at the Kentucky-Argonne Battery Manufacturing Research and Development Center and the University of Kentucky’s Spindletop Administration Building. NOHMs is developing electrode, electrolyte, and separator products as a 3-part solution for high-energy, low-cost, long-life, and safe batteries. NOHMs says its composite sulfur electrodes—carbon nanoparticles infused with sulfur developed at Cornell – can deliver a specific capacity of 550 mAh/g for hundreds of cycles. Next-generation cathode materials being developed will exceed 800 mAh/g, according to the company. The company claims a class of novel, non-flammable electrolytes that yield >99.9-percent Coulombic efficiency (CE) with high ionic conductivity and high thermal stability. Most researchers rarely mention battery separators, …