Cambridge Crude Reborn in Simplified Battery

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

We first saw the appellation, “24M” four years ago in our report on research done at MIT to produce an ionic liquid called “Cambridge Crude,” usable in flow batteries.   Dr. Yet-Ming Chiang headed up that work in collaboration with Professors Angela Belcher and Paula Hammond at MIT and Glenn Amatucci at Rutgers, among others.  They formed a commercial spinoff and seemingly went underground for the next four years. Dr. Chiang and his associates had previously gone commercial with A123, which went through the trial of bankruptcy and being acquired by overseas investors.  It’s now solvent and looking to double output.  24M is a spin-off of A123. We found that Professor Chiang had resurfaced when friend and blog reader Marshall Houston sent an article from Quartz about Chiang’s work with Dr. W. Craig Carter to expand on the foundational energy storage technology of 24M – based on the thick black electrolyte they’d created and a resulting semisolid electrode. Their semi-solid lithium-ion …

Cambridge Crude and Range Euphoria

Dean Sigler Electric Powerplants 1 Comment

Massachusetts Institute of Technology (MIT) scientists have announced what they claim is a “Significant advance in battery architecture [that] could be breakthrough for electric vehicles and grid storage.”    According to a story by David L. Chandler from the MIT News Office, the new battery system is lightweight and inexpensive, and could make recharging “as quick and easy as pumping gas into a conventional car.” Seemingly requiring some active components within the battery, this “semi-solid flow cell” pumps solid particles suspended in a carrier liquid which form the cathodes and anodes through the system.  According to the MIT news item, “These two different suspensions are pumped through systems separated by a filter, such as a thin porous membrane.”  Mechanically more complex than today’s batteries, the system still has a claimed “10-fold improvement over present liquid-flow batteries” (not necessarily that much better than lithium ion, then), but lower manufacturing costs. The different fluids are contained in two different containers and not …