Angela Belcher Continues Making Batteries with Viruses

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Three years ago, in one of our earliest entries, this blog reported on the blending of biology and chemistry in a bionic battery created by Massachusetts Institute of Technology researcher Angela Belcher. She was honored with a press briefing with President Obama, MIT President Susan Hockfield and her prototype battery, and used the occasion to encourage federal funding for such ventures.  In a later visit to her laboratory, the President accepted a business card with the periodic table, saying he would consult it periodically. She has turned her bionic battery research to improving the chances for lithium-air batteries to reach that magic 500-mile figure ( or at least 550 kilometers or 341 miles), and has explained her approach and progress …

Plasmonics – Not a New Rock Group

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

A good deal of what we see in life is counter-intuitive – things like pushing forward on the control stick when the airplane stalls and is headed downhill already.  Plasmonic metamaterials as designed by University of Pennsylvania scientists have counter-intuitive properties, such as breaking light that strikes them into surface plasmon polaritons with shorter wavelengths than the original incident light. This quantum-like reaction occurs when, “Light hitting a metamaterial is transformed into electromagnetic waves of a different variety—surface plasmon polaritons, which are shorter in wavelength than the incident light. This transformation leads to unusual and counterintuitive properties that might be harnessed for practical use. Moreover, new approaches that simplify the fabrication process of metamaterials are under development. This work also …

The Layered Look in Batteries

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Gurpreet Singh, assistant professor of mechanical and nuclear engineering, and his research team at Kansas State University in Manhattan, Kansas, are working out less expensive, more efficient ways to create nanomaterials and lithium-ion batteries. “We are exploring new methods for quick and cost-effective synthesis of two-dimensional materials for rechargeable battery applications,” Singh said. “We are interested in this research because understanding lithium interaction with single-, double- and multiple-layer-thick materials will eventually allow us to design battery electrodes for practical applications. This includes batteries that show improved capacity, efficiency and longer life.” Researchers grew graphene films on copper and nickel foils in less than 30 minutes by quickly heating them in a furnace in the presence of argon, hydrogen and methane …

Princeton Solar Cell is “Black Hole for Light”

Dean Sigler Electric Powerplants, Sustainable Aviation 2 Comments

A great deal of the light that falls on solar cell panels does little to generate electricity, with a high percentage bouncing off pointlessly.  Princeton researchers have confronted this issue with a layered assembly, otherwise known as a subwavelength  plasmonic cavity. Developed by Princeton University researcher Stephen Chou and a team of scientists, the cavity dampens reflections and traps light.  According to Princeton’s announcement, “The new technique allowed Chou’s team to create a solar cell that only reflects about 4 percent of light and absorbs as much as 96 percent. It demonstrates 52 percent higher efficiency in converting [direct] light to electrical energy than a conventional solar cell.” Overall, the team was able to increase solar cell efficiency a total …

Giving Power Walking a Whole New Meaning

Dean Sigler Electric Powerplants, Sustainable Aviation 0 Comments

Georgia Institute of Technology researchers have developed a self-charging power cell that uses a piezoelectric membrane to convert mechanical energy to chemical energy, then stores that energy until it can be released as en electrical current. Combining the power generator with the energy storage device, this hybrid is claimed to be more efficient than systems with separate generators and batteries.  When the piezoelectric membrane is flexed, it moves lithium ions in the power cell from one side of the cell to the other. Membranes in shoe heels and soles could produce power when a person walked, powering small electronic devices such as calculators or cell phones. Zhong Lin Wang, a Regents professor in the School of Materials Science and Engineering Georgia …