SolidEnergy Teams with A123 for High Energy Density Battery

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Take two Massachusetts Institute of Technology (MIT) business incubator realizations, mix their strengths and watch for the potential breakthroughs that could come in the form of high-energy-density batteries. According to its web site, “SolidEnergy is developing a safe, high energy density, and wide temperature capable rechargeable battery that has the potential to transform the consumer electronics, electric vehicle, and downhole exploration (as in well drilling) industries. The core technology is called a Solid Polymer Ionic Liquid (SPIL) lithium metal battery.” Founded in 2012, “one of the toughest years in the battery industry,” SolidEnergy’s “…objective is to develop an insanely great next generation battery and commercialize it in the fastest and most efficient way.” This decidedly brash approach needs a steadying hand at the wheel, which is where its partnership with A123 Systems comes into play. A123’s first collaboration under its expanded research and development model combines SolidEnergy’s SPIL technology with “the mature cell design and prototyping capabilities of A123.” This would help …

Better Batteries: Wrap It in Seaweed

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

MIT’s Technology Review reported last September that researchers at the Georgia Institute of Technology and Clemson University had formulated a way to keep silicon anodes in lithium batteries from cracking under the strain of expending and contracting while they charge and discharge. They added a “binding agent and food additive derived from algae” that is in turn derived from seaweed. This enables the anode to charge and discharge at an eight times greater rate than an equivalent carbon anode without breaking down, a common problem for “raw” silicon. Environmentally friendly, the manufacturing processes for this type of anode are claimed to be clean and inexpensive. According to the Technology Review, “Lithium-ion batteries store energy by accumulating ions at the anode; during use, these ions migrate, via an electrolyte, to the cathode. The anodes are typically made by mixing an electroactive graphite powder with a polymer binder—typically polyvinylidene fluoride (PVDF)—dissolved in a solvent called NMP (N-Methylpyrrolidone). The resulting slurry is spread …