Yi Cui and team Devise a 10X Anode

Dean Sigler Batteries, Electric Aircraft Components, Sustainable Aviation Leave a Comment

Batteries are complex things to design and make, with materials scientists and chemists facing unlimited numbers of options for materials choices, formulations and proportions, and manufacturing techniques that will make hoped-for performance attainable on a commercial level. Yi Cui and a distinguished array of undergraduate and graduate students at Stanford University have written 320 academic research papers since 2000, with the rate of publication seeming to increase every year. To put icing on that multi-layered cake, Dr. Cui has helped found his own battery company, Amprius, using his depth of knowledge to take batteries in directions interesting enough to draw the attention of well-known investors – including Stanford.  The only recent information on the web site today shows the firm is looking for a battery scientist and a battery engineer. His academic and research work continue, though, with his latest efforts producing a turn away from his work with silicon – ,making a novel lithium/carbon electrode with extremely high volumetric …

Dr. Cui’s Pomegranate-inspired Battery Bears Fruit

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Dr. Yi Cui seems to get inspiration from food.  A few years ago, his research team came up with a “yolk-shell structure” that helped contain the high amount of lithium that silicon anodes were able to absorb.  That battery design promised much, and an embellishment of that design seems to hold even greater promise. His newest effort, working at Stanford University with the Department of Energy’s SLAC National Accelerator Laboratory, features an electrode “designed like a pomegranate – with silicon nanoparticles clustered like seed in a tough carbon rind.”  This approach, according to its inventors, overcomes several remaining obstacles to the use of silicon in a new generation of lithium-ion batteries. Yi said the battery’s efficiency and longevity are promising.   “Experiments showed our pomegranate-inspired anode operates at 97 percent capacity even after 1,000 cycles of charging and discharging, which puts it well within the desired range for commercial operation.” Cui’s team has been working on preventing anode breakup for the …