On September 30, the National University of Singapore announced the world’s first energy-storage membrane, with the claim that it “outstrips existing rechargeable batteries and supercapacitors,” and according to Science Daily, “Surpasses existing rechargeable batteries and supercapacitors.” The cheese-cloth appearance looks a bit like a gauze bandage, but when sandwiched between what are alternatively described as two thin metal plates or two graphite plates can hold a significant charge much greater than that of conventional batteries or supercapacitors. The material, developed by a team from the National University of Singapore’s Nanoscience and Nanotechnology Initiative (NUSNNI), and led by principle investigator Dr Xie Xian Ning, is capable of holding a “charge at 0.2 farads per square centimeter. This is well above the typical upper limit of 1 microfarad per square centimeter for a standard capacitor,” according to the University. Because energy storage in capacitors is usually measured in farads, How Stuff Works calculates the following to help us understand what that means …