Nanopapers are, like the paper we use daily, made from wood pulp, but in this case reduced to nano-sized lengths and formed into “a network of nanofibrillated (tangled) cellulose (NFC).” This tangled network, a seemingly impenetrable mass, is surprisingly transparent, and the paper’s increased light scattering makes it 90 to 95-percent transparent (a counter-intuitive thought). Earlier discoveries showed that coating the paper with carbon nanotubes “made the paper very strong and highly conductive, which could allow it to be used for printed electronics (such as circuit boards) and in products that require a lightweight construction.” Extracting NFC from ordinary paper fibers is a time and energy intensive process, so the next batch of nanopaper won’t use these fibers, instead “detangling” or “unraveling” the cellulose through a process called tempo-oxidation to make “nanoribbons.” Nanopaper made from these ribbons is 91 percent transparent, has its surface oxidized to increase strength, and has a layer of silver nanowires for conductivity. A TEMPO (Tetramethylpiperidinyloxy) NaBr-NaClO oxidation …