Stanford researchers, working with scientists at Korea’s Ulsan National Institute of Science and Technology (UNIST) and China’s National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, at Nanjing University, have squeezed carbon as flat (if not flatter than) as graphene and poked lots of well-sized holes in it to make designer battery and supercapacitor components. Professor Zhenan Bao led the efforts at Stanford. The combined teams’ paper, “Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework,” appeared as a cover article in the May 18 edition of the journal ACS Central Science. The paper explains, “High surface area porous carbon materials are of great technological importance due to their diverse functionalities and excellent physical/chemical robustness. Their high electronic conductivity, large surface area, and good chemical and electrochemical stability are of particular interest for electrochemical energy storage devices, such as electrochemical capacitors (or supercapacitors) and batteries.” High surface area gives more space for electrolyte to interact with …