Is There a Graphene Battery in Our (Near) Future?

Dean Sigler Batteries, Fuel Cells, Hydrogen Fuel, Sustainable Aviation Leave a Comment

Graphene is fascinating stuff, with tons of promise.  Whether it can produce usable results for energy storage is still an open question. But Samsung and a startup called Real Graphene may have at least a start in that realm.  GAC, a Chinese auto firm, seems to be promising batteries before the end of what is left of this year.  There may be hope in the midst of a dark winter. Samsung’s Lagging Promise In 2017 a team of researchers at the Samsung Advanced Institute of Technology (SAIT) developed a “graphene ball,” promising  a 45-percent increase in capacity, and five times faster charging speeds than standard lithium-ion batteries. Hoping to power mobile devices and electric vehicles, SAIT collaborated closely with Samsung …

Two Different Carbon Batteries

Dean Sigler Batteries, Electric Aircraft Materials, Sustainable Aviation Leave a Comment

With lithium-ion batteries seeming to have topped out in their capabilities, battery researchers are looking at new ways of storing energy.  Zap&Go in England and Graphenano in Spain are exploiting a more common element  to good effect, crafting carbon batteries that charge quickly and last thousands of charge-discharge cycles.  Both attack their goals in very different ways. Zap&Go Carbon-ion Battery According to Microbattery.com, the Oxford-based organization Zap&Go has created and delivered a carbon-particle battery consolidating the superfast charging capacities of a supercapacitor to gain rapid charging and long cycle life.  Unfortunately, as far as electric vehicles go, it’s not quite ready for prime time.  The good news is that it’s on a well-structured timeline that will bring it to the vehicular world …

Funneling Light and Energy with New Materials

Dean Sigler Electric Aircraft Materials, Solar Power, Sustainable Aviation Leave a Comment

Dr. Adolfo De Sanctis, a Research Fellow in the Quantum Systems and Nanomaterials group at the University of Exeter (UK), earned his Ph. D. in physics with a dissertation on “Manipulating light in two-dimensional layered materials” (Nature Communications, May 2017).  The video below gives a short-hand view of his work. Other, less scholarly outlets (like this one) give an easy-to-read view of what he has accomplished, and why his research is of interest for many applications – including energy harvesting. Green Optimistic reports, “A team of researchers from the University of Exeter developed a solar cell with a record 60% efficiency. The idea behind this breakthrough is similar to using a ‘funnel’: corralling an amorphous collection of electrical charges into …

Graphene Supercapacitor Shows Promise and Longevity

Dean Sigler Batteries, Electric Aircraft Materials, Sustainable Aviation Leave a Comment

A forever battery would be nice, wouldn’t it?  Something low cost that could be recharged in seconds, time after time, indefinitely, and be about as environmentally sensitive as Greenpeace and the Sierra Club combined – there’s the ideal battery. That might seem like a miracle, and it relies on that miracle material – graphene – for its many astounding properties to help make this flexible battery a reality. Dr. Han Lin of Swinburne University in New South Wales, Australia has 3D printed his prototype battery at a much lower cost than with previous production techniques.  The immediate “take” on this material is that it could be used in things like watch straps, powering the attached timekeeper, or in (inter)active sports …

EAS IX:  Materials Design for Battery Breakthroughs

Dean Sigler Electric Aircraft Components, Electric Powerplants, Sustainable Aviation Leave a Comment

Dr. Yi Cui’s presentation title ended with, “from Fundamental Science to Commercialization,” an indication of the long, tough road that new developments are forced to take.  Considering that Sony introduced the Lithium battery as a commercial entity in 1991 (and that following at least an 18-year slog from laboratory to mass production), mostly incremental changes have come for the chemistry, echoing Dr. Cui’s pronouncement at EAS III that lithium batteries followed a “growth curve” of about eight percent per year, meaning that about every nine years, they should double in performance. Cui’s estimate has been borne out in reality, Nature magazine reporting in 2014, “Modern Li-ion batteries hold more than twice as much energy by weight as the first commercial …

MSCs Could be AOK

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Of late, your editor has noticed several press releases concerning scientific findings that don’t read in a scientific way.  You know that objective kind of writing: the use of words and phrases such as “tend to,” “suggesting,” or “of potential interest,” and the ever-popular, “further study is required.”  An announcement from the Center for Integrated Nanostructure Physics at the Institute for Basic Science (IBS) and Department of Energy Science at Sungkyunkwan University in South Korea tells a hopeful story of a new discovery mimicking nature and “displaying electrical properties about five orders of magnitude higher than similar lithium batteries, and even claiming, “stunning test results.”   These sound more like PR than simple declarative statements. Before running to your broker to see if …

Samsung Almost Doubles Li-Ion Battery Capacity – in the Near Future

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Several sources report on Samsung’s announcement that they have developed a new technology that enables them to coat silicon battery cathodes with high crystal graphene, virtually doubling the capacity of lithium-ion batteries. Of course, Samsung relates this immediately to their popular smartphones and tablets, but the significance of this is not lost on electric vehicle designers.  Doubling the range of EVs “without adding a single pound of weight” would be a true game changer.  But don’t get excited too quickly. Silicon electrodes have been a major research effort for people like Dr. Yi Cui, who spoke at this year’s Electric Aircraft Symposium.  Issue surrounding their successful use have included silicon’s expansion when being charged and contraction when being discharged.  This …

Designer Carbon: High Surface Area and Porosity

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Stanford researchers, working with scientists at Korea’s Ulsan National Institute of Science and Technology (UNIST) and China’s National Laboratory of Microstructures (Nanjing), School of Electronic Science and Engineering, at Nanjing University, have squeezed carbon as flat (if not flatter than) as graphene and poked lots of well-sized holes in it to make designer battery and supercapacitor components.  Professor  Zhenan Bao led the efforts at Stanford. The combined teams’ paper, “Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework,” appeared as a cover article in the May 18 edition of the journal ACS Central Science. The paper explains, “High surface area porous carbon materials are of great technological importance due to their diverse functionalities and excellent physical/chemical robustness. Their …

Put Three Things Together – 3D, Aerogel, Graphene – and It’s Got to be Good

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

If there were a pantheon of technological hipness, right now three front-runners for induction would be 3D printing, aerogel and graphene.  They all rank high on the disruptive technology scale, have enormous amounts of good press, and excite the imagination with their potential. Lawrence Livermore National Laboratory researchers have gone beyond combining chocolate and peanut butter by blending the three higher-tech ingredients into a rather amazing battery material with excellent electrical and mechanical properties.  We have discussed the idea of structural batteries in this blog, and this new melding of technologies holds much promise. Aerogel, as defined in the Laboratory’s announcement, “is a synthetic porous, ultralight material derived from a gel, in which the liquid component of the gel has …

Caging Hydrogen in Self-assembling Origami Structures

Dean Sigler Electric Powerplants, Sustainable Aviation Leave a Comment

Let’s say that you’re really good at folding pieces of paper into miniature birds such as cranes, or life-size elephants, something origami artist Sipho Mabona did recently, starting with a 50-foot by 50-foot piece of paper (he had help from up to 40 others).   The paper elephant, including a metal subframe to support it, weighs over 500 pounds. How about using origami to trap hydrogen in a novel approach to storing energy for fuel cells?  Only, instead of paper, you might use sheets of graphene cleverly folded into cages no more than a few nanometers across – the opposite of the elephant in the art gallery.  Researchers at the University of Maryland’s Department of Mechanical Engineering and Maryland NanoCenter, have …