The Pacific Northwest National Laboratory in Richland, Washington, seems to have an industrious group of researchers who come up with ever-improved forms of batteries. One of their creations, a hybrid graphite/lithium anode, was featured in this blog last year. Now, Frances White reports from the PNNL that one of the researchers involved with that work has led another team to an innovative approach to a new electrolyte for lithium batteries. According to Ms. White, “PNNL physicist Jason Zhang (Ji-Guang “Jason” Zhang) and his colleagues have developed a new electrolyte that allows lithium-sulfur, lithium-metal and lithium-air batteries to operate at 99 percent efficiency, while having a high current density and without growing dendrites that short-circuit rechargeable batteries.” This is a real breakthrough …
Lighter, More Powerful, Cheaper. Can J-CESR Bring Us Better Batteries?
$70,000 is a sizable base price for a car. That sum for the simplest of Tesla S sedans makes a bigger than average debt load for most of us, probably more than most can responsibly assume. Even the much anticipated model “E” at half that price is more stunning than the average sticker shock these days. What if, by some act of art or science, that $70,000 could be slashed to $14,000 for an electric vehicle that could travel 265 miles on a charge? That tall order is the order of the day for the Joint Center for Energy Storage Research, started two years ago under Dr. Steven Chu, who was then U. S. Secretary of Energy. He and his …
EAS VIII: Ultra High Energy Density Lithium Battery
Qichao Hu is Cofounder, President and interim CEO of SolidEnergy, a battery company with a different technology and a unique business plan. According to his company’s web site, he “Cofounded SolidEnergy while a PhD student at MIT, and led it through early stage business plan competition, fundraising, licensing and collaboration negotiation, and technology development. 2012 Forbes 30 Under 30 in Energy, and is a graduate of MIT and Harvard University.” His team was also the Deployment and Infrastructure Category Winner in the 2012 MIT Clean Energy Prize competition. In his presentation to the eighth annual Electric Aircraft Symposium on April 25, Hu told about his Waltham, Massachusetts startup’s strategic partnership with A123, the Pacific Northwest National Laboratory and Argonne National Laboratory. …
Hybrid Batteries in Hybrid Vehicles?
Frances White of the Pacific Northwest National Laboratory (PNNL) reports that a new anode quadruples the life of a test lithium-sulfur battery and could lead to much lower costs for electric vehicles and large-scale energy storage. This blog has noted that many researchers focus on development of better cathodes, or anodes, or electrolytes exclusively, neglecting a more holistic, or whole battery approach to their delving. PNNL scientists have a reason for focusing on anodes, having found that a “battery with a dissolved cathode can still work.” What dissolves the electrodes in a battery? “Unwanted side reactions,” according to PNNL, cause the battery’s sulfur-containing cathode to disintegrate slowly and form polysulfide molecules that dissolve into the battery’s electrolyte liquid. This becomes …
Algae to Crude While You Wait
Engineers at the Department of Energy’s Pacific Northwest National Laboratory in Richland, Washington have beat nature by millions of years in turning algal glop into crude oil, cooking a “a verdant green paste with the consistency of pea soup” into oil, water, and a nutritious batch of byproducts. Douglas Elliott, the laboratory fellow leading PNNL team’s research says, “It’s a bit like using a pressure cooker, only the pressures and temperatures we use are much higher. In a sense, we are duplicating the process in the Earth that converted algae into oil over the course of millions of years. We’re just doing it much, much faster.” “Faster” means an hour or less, researchers having combined several chemical steps normally associated with …
I’ll Take Manhattan
While much of battery research goes into crafting the ultimate anode, cathode or electrolyte, there seem to be few efforts, at least to outside observers, of integrated approaches to making a better total battery. That may change soon, with the Department of Energy announcing formation of a new Joint Center for Energy Storage Research (J-CESR, or J-Caesar). Dr. Steven Chu, U. S. Secretary of Energy, has established the Center at Argonne National Laboratory with a budget of $120 million over five years to create a battery five times more powerful and five times cheaper than today’s norms – all within five years. For those of us who’ve grown wary of those “breakthough” announcements that almost always include the line, …
That’s No Yolk!
Dr. Cui is at it again! In a seemingly endless stream of announcements, his work with silicon anodes keeps promising improvements in battery capacity and longevity. The Stanford professor and his team, Stanford’s National Accelerator Laboratory (Formerly the Stanford Linear Accelerator Center), and the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory all published papers on their latest joint accomplishment. Conceptual drawing of silicon filling carbon shell, TEM photo of actual expansion, and life cycle analysis for yolk-shell batteries Expansion and contraction of anodes and cathodes during charging and discharging of batteries causes flexing and eventual breakdown of a battery’s internal components. Cui and other researchers have tried various strategies to mitigate or eliminate this flexing, but the …